Plotting Simple Graphs

Using the *matplotlib* Module

Plotting Simple Graphs

- The **matplotlib** is a comprehensive library tools for creating static, animated, and interactive visualizations. The **pyplot** submodule provides simple functions for creating and displaying graphs:
 - O from matplotlib import pyplot
 - O pyplot.bar('Q1', 99.1)
 pyplot.bar('Q2', 10.0)
 pyplot.bar('Q3', 25.4)
 - O pyplot.xlabel('Quarter')
 - O pyplot.ylabel('Revenue')
 - O pyplot.show()

Google's Colaboratory

- <u>https://colab.research.google.com</u>
- Allows you to write and execute Python in your browser, combining executable code and rich text in a single document, along with images, HTML, etc.
 - Zero configuration required
 - Free access to GPUs
 - Easy sharing
 - Colab is used extensively in the machine learning community

Plotting Functions

Operation	Description	
pyplot.bar(<i>x_value</i> , <i>y_value</i>) pyplot.bar([<i>x_values</i>], [<i>y_values</i>])	Plots a single bar on the graph or multiple bars when the x_values and y_values are provided as lists	
<pre>pyplot.plot([x_coords], [y_coords]) pyplot.plot([x_coords], [y_coords],</pre>	Plots a line graph. The color and style of the line can be specified with a format string	
pyplot.grid('on')	Adds a grid to the graph	
pyplot.xlim (<i>min, max</i>) pyplot.ylim (<i>min, max</i>)	Sets the range of x_values or y_values shown on the graph	
pyplot.title (<i>text</i>)	Adds a title to the graph	

Plotting Functions, continued

Operation	Description
pyplot.xlabel (<i>text</i>) pyplot.ylabel (<i>text</i>)	Adds a label below the x-axis or to the left of the y-axis
pyplot.legend ([<i>label</i> 1, <i>label2</i> ,])	Adds a legend for multiple lines
pyplot.xticks([$x_coord_1, x_coord_2,$], [$label_1, label_2,$])	Adds labels below the tick marks along the x axis
pyplot.yticks([<i>x_coord</i> ₁ , <i>x_coord</i> ₂ ,], [<i>label</i> ₁ , <i>label</i> ₂ ,])	Adds labels to the left of the tick marks along the y axis
pyplot.show()	Displays the plot

Plotting Format Options

Character	Color			Character	Marker Style
b	Blue	Character	Line Style		Point
g	Green	-	Solid	Ο	Circle
r	Red		Dashed		Triangle down
С	Cyan			V .	
m	Magenta		· Dotted		Triangle up
 	Yellow	•		S	Square
у			Alternating dashes and	*	Ctor
k	Black	Ξ.			Slar
W	White		dots	D	Diamond

Monte Carlo Methods

• Estimating the value of an unknown quantity using principles of inferential statistics. It can involve simulation experiments using random numbers.

Experiment to Estimate π

Investment Simulation

 Say we invest \$1000 over 10 years at a rate of interest chosen randomly requency between 0% and 6%. We can perform this experiment 50,000 times and plot the result as a histogram.

Monte Carlo Investment Simulation (50000 runs)

Space / Time Tradeoffs

Indexing

A Space-Time Tradeoff: Indexing

1	Edwards	Nancy	Sales Manager	8-Dec-58
2	Mitchell	Michael	IT Manager	1-Jul-73
3	Callahan	Laura	IT Staff	9-Jan-68
4	King	Robert	IT Staff	29-May-70
5	Johnson	Steve	Sales Support Agent	3-Mar-65
6	Park	Margaret	Sales Support Agent	19-Sep-47
7	Peacock	Jane	Sales Support Agent	29-Aug-73

A Space-Time Tradeoff: Indexing

1	Edwards	Nancy	Sales Manager	8-Dec-58		/
2	Mitchell	Michael	IT Manager	1-Jul-73	$\langle \rangle$	
3	Callahan	Laura	IT Staff	9-Jan-68	X	/
4	King	Robert	IT Staff	29-May-70	X	
5	Johnson	Steve	Sales Support Agent	3-Mar-65		\backslash
6	Park	Margaret	Sales Support Agent	19-Sep-47		_
7	Peacock	Jane	Sales Support Agent	29-Aug-73		_
employees.csv file inde					ıde>	

Index Structures: Binary Search

Index Structures: B-Tree Example

Index Structures: Hash Tables

Hash Function hash bucket numbers

Key

1	Edwards	Nancy	Sales Manager	8-Dec-58
2	Mitchell	Michael	IT Manager	1-Jul-73
3	Callahan	Laura	IT Staff	9-Jan-68
4	King	Robert	IT Staff	29-May-70
5	Johnson	Steve	Sales Support Agent	3-Mar-65
6	Park	Margaret	Sales Support Agent	19-Sep-47
7	Peacock	Jane	Sales Support Agent	29-Aug-73

Other Time/Space Trade-offs

- caching
- compression
- multi-resolution images
- storing derived data vs. recomputing it

Caching

- A cache is a place to store data so that it be accessed more easily/ rapidly
 - Hardware caches: L1, L2, L3 (registers are a form of cache)
 - Main memory is frequently a cache for persistent data
 - Database: persistent data may reside on SSD or spinning disk, but subsets are held in memory while they are being accessed
- The trade-off:
 - $\circ~$ The cache consumes space ...
 - \circ ... but provides quicker access to data

Compression

- Large data is frequently compressed to consume less space
 - Once compressed, computing on it and/or visualizing it typically requires computation
- The trade-off:
 - Keep data in a compressed form, saving on storage ...
 - ... but uncompressing it requires computation (i.e., slower)

Compression Example: Image Storage

- High resolution images are beautiful
 - But they are large, and consume bandwidth to transmit
 - Devices with small displays may not be able to make use of the high resolution
- The trade-off:
 - Store many different resolutions for different scenarios (saving space)
 - Create reduced resolution copies as needed (consuming time)

Storage versus Recomputation

- Any time you create a derived data product, you face a space/time trade-off
 - Compute monthly sales numbers
 - Generate reports
- Do you keep the derived data or recompute it the next time you need it?

Machine Learning

Defining Machine Learning (ML)

- Older, informal definition from Arthur Samuel:
 - "a field of study that gives computers the ability to learn without being explicitly programmed."
- From IBM:
 - "a branch of artificial intelligence (AI) that focuses on the use of data and algorithms to imitate the way that humans learn, gradually improving its accuracy."
- Formal definition from Tom Mitchell at CMU:
 - "a computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E."

Applications of Machine Learning

- Examples we often experience:
 - Google or Bing search (results are ranked)
 - Facial recognition in Facebook or Apple Photos
 - Netflix/Amazon/iTunes recommendations
 - Email spam filter
 - Handwriting recognition (check deposits/mail routing)
- Research examples:
 - Predict whether a cancer cell is malignant or benign
 - Estimate the CO2 emissions of a hypothetical auto

Machine Learning

Useful Python Libraries

Numpy

- Used to create multi-dimensional arrays
 - import numpy as np
 - o arr = np.array([1, 2, 3, 4, 5])
 - o arr2 = np.array([[1, 2, 3], [4, 5, 6]])
- the **ndim** attribute returns an integer with the # of dimensions the array has.

SciPy

- *SciPy* is a scientific computation library
 - from scipy import stats
 - o data = [99, 86, 87, 88,103, 87, 94, 86, 78, 77, 85, 86]
 - x = stats.mode(data)
- Optimizers are a set of procedures defined in SciPy that either find the minimum value of a function, or the root of an equation.
 - While *NumPy* is capable of finding roots for polynomials and linear equations, it can not find roots for *non* linear equations

Pandas

• A *DataFrame* is a 2 dimensional data structure, like a 2D array, or a table with rows and columns. For example,

```
import pandas as pd
data = {
                "radius": [17.99, 20.57, 19.69],
                "texture": [10.38, 17.77, 21.25]
                }
    df = pd.DataFrame(data, index = ["p1", "p2", "p3"])
print(df)
```

 CSV files (as well as a JSON files) can be loaded into a DataFrame. For example, import pandas as pd df = pd.read_csv('cancer_data.csv')

Scikit-Learn

- SciKit-Learn is a collection of algorithms (clustering, regression, classification) and tools for machine learning
- Works well with numpy and scipy
- A machine learning task can be done simply in a few lines of code using SciKit-Learn

Machine Learning

Supervised Learning via Regression

Supervised Learning using Regression

• Linear Regression uses the relationship between data points to draw a straight line through all them. This line can be used to predict future values.

Coefficient of Correlation, r

 To determine how well you data fits a linear regression, compute r. The values range from -1 to 1, where 0 means no relationship.

Supervised Learning using Regression

- For example, can the size of a car's engine (the independent variable) predict the car's CO2 emissions (the dependent variable)?
 - See: <u>https://www.kaggle.com/debajyotipodder/co2-emission-by-</u> vehicles
 - Program linearRegression.py creates a scatterplot of a subset of this vehicle data and then uses the linregress function in the stats module of the scipy library
- To improve accuracy, we can use more than one independent variable, such as engine size and the number of cylinders. See multipleRegression.py

Non-Linear Regression

- Sometimes linear regression is not be the best method to predict future values. For example,
 - x = [89, 43,36, 36, 95,10, 66, 34,38, 20, 26, 29, 48, 64, 6, 5,36, 66,72,40]
 - y = [21, 46, 3, 35, 67, 95, 53, 72, 58, 10, 26, 34, 90, 33, 38, 20, 56, 2, 47, 15]
 - see programs badFit.py and goodFit.py

HARVARD BUSINESS ANALYTICS PROGRAM