
Python
Strings

Strings as Character Sequences
● Concatenation
● Repetition
● Indexing and Slicing

● Searching

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10]

H B A P r o c k s !
[-11] [-10] [-9] [-8] [-7] [-6] [-5] [-4] [-3] [-2] [-1]

strings are immutable

String Functions
Example Explanation

a_string.center(w) returns a_string evenly surrounded by
spaces to make it w characters long

a_string.count(str) # of occurrences of str in a_string
a_string.upper() returns a_string in all uppercase

a_string.index(str) returns index of first occurrence of str in
a_string, or an error if not found

a_string.find(str) returns index of first occurrence of str in
a_string, or -1 if not found

a_string.replace(s1, s2) returns a string with all occurrences of s1
substring replaced by s2 substring

See stringTest.py

Lists and Files
● Lists and files are important structures for collections of data

that are all of the same type. Both consist of a sequence of
elements:

[0]

[1]

[2]

[n-1]

…

List File
Access “random” sequential

Size memory disk space

Lifetime transient semi-permanent

a_variable

Python
Lists

List Initialization & Traversal
● A list is an ordered, mutable sequential collection of heterogeneous

objects, written as comma-delimited values enclosed in square brackets.
● Lists can be explicitly initialized when created, e.g.,

○ banks = ['JP Morgan', 'BofA', 'Wells Fargo',  
 'Citigroup']

● Use square brackets to access a list element, e.g., banks [2]
● Every Python sequence has a function named len. What will the

following code print?

○ for i in range (len(banks)) :  
 print (len(banks[i])-1)

“List Mystery" Problem
● Traversal: An examination of each element of a list.
● What error occurs in the following? After fixing the problem, what

values get printed at the end?

 a = [1, 7, 5, 6, 4, 14, 11]
for i in range (len(a)):

 if a[i] > a[i + 1]:
 a[i + 1] = a[i + 1] * 2  

print (a)

Common List Functions and Operators
Operation Description

[]
[elem1, elem2, ..., elemn]

creates a new empty list, or a list that
contains the initial n elements provided

len (lst) returns the number of elements in list lst

list (sequence) creates a new list containing all elements of
the sequence

values_list * num creates a new list by replicating the
elements in the values_list num times

values_list + more_list creates a new list by concatenating
elements in both lists

More List Functions and Operators
Operation Description

lst [from : to]
creates a sublist from a subsequence of elements in

list lst, starting at position from and going through but
not including position to. Both from and to are

optional

sum (lst) computes the sum of the values in list lst

min (lst)
max (lst) returns the minimum or maximum value in list lst

lst1 == lst2 tests whether two lists have the same elements, in the
same order

3 Ways to Create a New List
Suppose we have countries = ['USA', 'Canada', 'Mexico']

● Using the append function
○ x = []
○ for c in countries:  

 x.append (len(c)) # or x = x + [len(c)]  

● By creating and modifying a list …
○ x = [0, 0, 0]
○ for i in range (len(countries)):
○ x[i] = len(countries[i])  

● Most Pythonic: using a “list comprehension” …

○ [len(c) for c in countries]

List References
● When you copy a list variable into another, both

variables refer to the same list. The second variable is
an alias for the first. For example,

● prices = [10.34, 9.75, 7.50, 4.22, 5.0]

● values = prices  
[0] 10.34

[1] 9.75

[2] 7.50

[3] 4.22
[4] 5.0

[0] 10.34

[1] 9.75

[2] 7.50

[3] 2.1
[4] 5.0

prices
values

● values [3] = 2.1

Python
Files and Command-Line Arguments

Opening and Closing Files
● infile = open ('input.txt', 'r')

○ use read() and readline() to input characters from a file
● outfile = open ('output.txt', 'w')

○ use write() method to output data into a file
○ use 'a' for appending output to existing file, not 'w'

● Close files after data is processed
○ infile.close()
○ outfile.close()

Command-Line Arguments
● When you run a Python program from the “command line,” you type the name

of the program … but you can also type in additional information that the
program can use. These additional strings are command line arguments.

● For example, in python program.py -v input.dat
program.py receives 3 command line arguments: the strings "program.py", "-v"
and “input.dat"

● Your program receives its command line arguments in the argv list defined in
the sys module. In our example, the argv list has a length of 3 and contains
these strings argv[0] == "program.py" argv[1] == "-v" argv[2] == "input.dat"

Python
CSV Files

● Most spreadsheet applications store their data in proprietary file
formats. Fortunately, most can save a copy of the data in a
portable format known as CSV (Comma-Separated Values).

https://raw.githubusercontent.com/nytimes/
covid-19-data/master/live/us-states.csv

Working with Spreadsheet Files

File employees.csv

Manager LastName FirstName Title BirthDate HireDate Address City

Adams Andrew General Manager 2/18/1962 0:008/14/2002 0:0011120 Jasper Ave NW Edmonton

Michael Mitchell Callahan Laura IT Staff 1/9/1968 0:003/4/2004 0:00923 7 ST NW Lethbridge

Andrew Adams Edwards Nancy Sales Manager 12/8/1958 0:005/1/2002 0:00825 8 Ave SW Calgary

Nancy Edwards Johnson Steve Sales Support Agent 3/3/1965 0:0010/17/2003 0:007727B 41 Ave Calgary

Michael Mitchell King Robert IT Staff 5/29/1970 0:001/2/2004 0:00590 Columbia Boulevard WestLethbridge

Andrew Adams Mitchell Michael IT Manager 7/1/1973 0:0010/17/2003 0:005827 Bowness Road NW Calgary

Nancy Edwards Park Margaret Sales Support Agent 9/19/1947 0:005/3/2003 0:00683 10 Street SW Calgary

Nancy Edwards Peacock Jane Sales Support Agent 8/29/1973 0:004/1/2002 0:001111 6 Ave SW Calgary

● A CSV file is simply a text file in which each row of the
spreadsheet is stored as a line of text. The data values in each
row are separated by commas. For example:

Working with CSV Files
● First: import csv to access the reader and writer methods

● Second: open the CSV file in the usual manner; e.g.,

○ infile = open (“myCSVfile”, “r”)
● Third: create a CSV reader: r = csv.reader(infile)

○ r is an "iterator object" for moving through the rows in the
file. Each row is returned as a list, e.g.,
for row in r:  
 print(row)

○ You can also skip a row: next(r)

Python
Dictionaries

Dictionaries
● A dictionary is a container that keeps associations between keys

and values. Every key in the dictionary has an associated value.
Keys are unique, but a value may be associated with several keys.

● Syntactically,
○ empty_dict = {}

○ fav_stocks = {  
 'AAPL': 100,  
 'MSFT': 50,  
 'FB': 100,  
 'AMZN': 30 }

Keys Values

AAPL

MSFT
AMZN

FB
100

50

30

Common Dictionary Operations
Operation Returns

d = dict() 
d = dict(c)

Creates a new empty dictionary or a duplicate
copy of dictionary c

d = {}  
d = {k1:v1, k2:v2, 

…, kn:vn)

Creates a new empty dictionary, or a dictionary
that contains the initial items provided. Each item
consists of a key (k) and a value (v) separated by

a colon

len(d) Returns the number of items in dictionary d

key in d
key not in d Determines if the key is in the dictionary, d

More Dictionary Operations
Operation Returns

d[key] = value
Adds a new key/value item to the dictionary if the

key does not exist. If the key does exist, it
modifies the value associated with the key

x = d[key] Returns the value associated with the given key.
If the key does not exist, an exception occurs

d.pop(key) Removes the item associated with the given key
and returns its value

d.values() Returns a sequence containing all values of the
dictionary

d.get(key,
default)

Returns the value associated with the given key,
or the default value if the key is not present

List vs. Dictionary
● It’s nice to index an item of interest directly, where the

index is not necessarily an integer
Index A List

[0] element1

[1] element2

[2] element3

[3] element4

… …

Index A Dictionary
key1 value1

key2 value2

key3 value3

key4 value4

… …

Disadvantage of Lists
● What happens if we sort one of these lists? Or if we

want to retrieve a particular student’s grade?
Index name_list

[0] “Mary”

[1] “Henry”

[2] “Arturo”

[3] “David”

… …

Index grade_list

[0] “A”

[1] “C-”

[2] “A-”

[3] “Pass”

… …

Dictionary Values and Keys
● Values

○ Can be any type (immutable and mutable)
○ Can be duplicates
○ Can be lists, even other dictionaries!

● Keys

○ Must be unique

○ Immutable type (int, float, string, bool, tuple)

● There’s no order to keys or their values!

Processing CSV files
● First, let's create a new CSV file by modifying an existing one

○ Introduce the del operator
○ Illustrate try - except statement to make programs more

robust

● Second, let's modify file employees1.py
○ Utilize a DictReader (available in CSV module)
○ Will allow us to reference fields by their names

Python
Retrieving Web Data and APIs

How to Read Data from the Web
• The requests module is used to make HTTP requests in

Python. It abstracts various complexities behind a simple
API:
○ The get method indicates that you’re trying to retrieve

data from a specified resource. For example,
response = requests.get('some URL')
if response:
 print('Success!')
else:
 print('An error has occurred.')

Python
Sets

Sets
● A set stores a collection of unique values. Unlike

lists, the members of a set are not stored in any
particular order (they can't be accessed by
position).

● Operations on sets are the same as the mathematical
set operations, such as intersection and union.

● Simple example: stocks = {'AAPL', 'FB', 'AMZN'}
‘AAPL’

‘AMZN’
‘FB’

Creating and Using Sets
● You can also use the set function to convert any sequence in

a set. For example,

○ stock_symbols = ['AAPL', 'FB', 'AMZN']
○ stocks = set(stock_symbols)

● You cannot use {} to create an empty set. Instead, use set()
● You can use:

○ the len function
○ the in operator
○ a for loop to iterate over all elements in a set

Manipulating Sets
● Like lists, sets are mutable containers, so you can add and

remove elements:
○ stocks.add('MSFT')
○ stocks.discard('TESLA')
○ stocks.remove('Foobar')

● The issubset method returns True or False to report whether
one set is a subset of another

● Methods union, intersection and difference also allow the use
of operators |, &, - There is also ^

Python
Tuples

Tuples
● A tuple is very similar to a list, but once created, its contents cannot be

modified.

● A tuple is created by specifying its contents as a comma-separated
sequence. You can enclose the sequence in parentheses:
triple = (5, 10, 15) If you prefer, you can omit the parentheses:
triple = 5, 10, 15

● Any list operation that does not modify the content of a list can be used,
e.g.,
○ element = triple[0]
○ len(triple)
○ 47 not in triple

Tuple Capabilities
● A tuple can be used to swap the value of two variables:

○ (x, y) = (y, x)

● A tuple can return more than one value from a function:
○ def quot_and_remainder (top, bottom):  

 quot = top // bottom  
 remainder = top % bottom  
 return (quot, remainder)  

○ q, r = quot_and_remainder (34, 5)

Python Data Types
• Simple

• int 17 -3
• float 1.7 3.2e2
• bool True False
• str "foobar" 'foobar'
• NoneType None 

• Complex
• range range(3, 22, 2) range(1, 10) range(10)
• list [1, 3, 4, 4, 4, 5]
• set {1, 3, 4, 4, 4, 5} #duplicates not allowed
• dict ages = {‘Dave’:18, ‘Mary’:22}
• tuple (0, 0)

