
Python Programming

Python

Running a Python Program
● Interactive Mode: Python commands are

typed directly into the Python shell, where they
get immediately executed. Useful for quick
experimenting

● Normal Mode: Alternatively, Python
commands can be saved in a file whose name
ends with .py, and then executed as often as
you like

Python
Defining Your Own Functions

Printing in a Terminal Console
● Examples of console output statements using the simplest

Python function, print:

○ print (' ')

○ print (' ', end='')
  

\"\t\n● Useful escape sequences:

Define Your Own Python Function
● Draw a box that looks like this using print:

+------------+  
| |  
| |  
| |  
| |  
| |  
+------------+

Now modify the
program to draw
more than one of
these rectangles.

Python
Variables

Computer Memory and Variables

foobar34517

Variables Get Values Using =
● The first time a variable is assigned a value, the variable is

created and initialized with that value. After a variable has
been defined, it can be used in other statements. E.g.,
○ foobar = 17
○ foobar = 3.14
○ foobar = 'blah'  

● Note: The data type of a value specifies how the value is
stored in the computer and what operations can be
performed on the value.

Naming Identifiers in Python
● Identifiers must begin with a letter and may contain additional letters

and digits. __ (underscore) can be used in place of a letter. Are
any of following legal identifiers?
○ _6pack
○ x+y
○ president Biden

● Avoid l (lowercase letter el), O (uppercase letter oh), or I
(uppercase letter eye) as single character variable names.

● Reserved words (e.g., for, while, def, …) cannot be used!
● Function and variable names should be in lowercase.

The Assignment Statement
● You assign the value of an expression to a

variable:

● Assignment is different from algebraic “equals”

 variable = expression

Algebra Python
x = 3 x = 3

y = 2x y = 2 * x

x = 5 x = 5

0 = x2 - x -2

Arithmetic Operators
● Simple arithmetic expressions can be formed with

● With //, the answer is truncated. For positive integers, floor division computes the
quotient and discards the fractional part.

● % (modulus) computes the remainder

● Suppose n = 1729 What do the following expressions compute?

○ n % 10 n // 10
○ n % 100 n % 2

● // and % are also defined for negative integers and floating point numbers, but
won’t be covered!

** /// %*-+

Python
Iteration / Looping / Repetition

Iteration Using the for Loop
● Python syntax

 for variable in container :  
 Python statement[s]

 # statements in the loop body are
 # executed for each element in the container

● An example:
 for i in range(3):  
 print(i, i*i)

0 0
1 1
2 4

Another for Loop Example
print ("+----+")
for i in range(3):
 print ("\\ /")
 print ("/ \\")
print ("+----+")

outputs
+----+
\ /
/ \
\ /
/ \
\ /
/ \
+----+

The range Function

● range function accepts 1, 2, or 3 arguments
● for x in range(5):  

print (x)
● for x in range(1, 5):  

print (x)
● for x in range(4, 14, 3):  

print (x)

outputs 0, 1, 2, 3, 4

outputs 1, 2, 3, 4

outputs 4, 7, 10, 13

Counting Backwards
How to produce the lyrics:

99 bottles of beer on the wall.
99 bottles of beer!
If one of those bottles should happen to fall,
There'd be 98 bottles of beer on the wall!

98 bottles of beer on the wall.
98 bottles of beer!
If one of those bottles should happen to fall,
 …

Python
Keyboard Input

Getting Keyboard Input
●Your programs will be more flexible if they ask

the user for inputs rather than using fixed
values.

●When a program requests user input, it should
first print a message that tells the user what
value is expected. Such a message is called a
prompt. In Python, displaying a prompt and
reading the keyboard input is combined in one
operation using the input() function

Simple Example Using input()

#file greeting.py  

name = input ("What's your name? ")
age = input ("How old are you? ")
print ("Greetings", name)
print ("You don't look", age, "years old!")

Boolean-valued Expressions
● In Python, the 6 basic relational operators each

produce the value True or False:

!=

<=
>=

==

>
<

expression2 expression1

Conditional Statements
● Syntax

if Boolean-expression :  
 Python-statement[s]1  

if Boolean-expression :  
 Python-statement[s]1

else:  
 Python-statement[s]2  

● elif is an abbreviation of "else if"

Python
Defining Functions that Accept Arguments

Defining Python Functions That Accept Arguments

● Functions can have multiple parameters (separated by ,)
○ When calling the function, you must pass an actual

value for each parameter.

● Defining:
 def function_name (param1, param2, ..., paramn) :

Python statement[s]

● Calling: function_name (expr1, expr2, … , exprn)

Python
Modules and Indefinite Repetition

3 Ways to Import Modules
● You can import multiple functions from the same module:

○ from math import sqrt, sin, cos

● You can also import the entire contents of a module:
○ from math import *

● Alternatively, import the module with the statement
○ import math
○ With this form of import, you need to add the module name and

a period before each function call, like this: y = math.sqrt(x)

math Module Methods That Return Values
Function Description Example Result
gcd greatest common

divisor
math.gcd(32, 72) 8

log10 logarithm base 10 math.log(1000) 3

sqrt square root math.sqrt(3) 1.73205080756888

sin sine (radians) math.sin (
 3*math.pi / 2)

-1.0

factorial product of [1.. n] math.factorial(6) 720

degrees radians to degrees math.degrees(3.14) 179.908747671079

Iteration Using while
● The while permits "indefinite" looping. The syntax:

 while bool-expression :  
 Python instruction[s]

● The semantics: bool-expression gets evaluated. If True, the Python
instruction[s] are executed; then we start over again by checking the bool-
expression . The Python instruction[s] may be executed any number of times.
○ If bool-expression is False initially, then … ?
○ After the while loop terminates, bool-expression … ?
○ If executing Python instructions[s] does not make it possible for bool-

expression to become False (when it started off True), then what?

Python
Formatted Output

Bo!ng

Digr"sion …

Formatted Output Via f-strings
● for x in range(1, 10):  
 print (f'{x} {x*x:4d} {x**3:5d}')

  
outputs
 1 1 1
 2 4 8
 3 9 27
 4 16 64
 5 25 125
 6 36 216
 7 49 343
 8 64 512
 9 81 729

Format
specifier Output Format

nx hexadecimal integer

nc converts integer to
UNICODE

nd decimal integer

w.nf fixed-point precision
optional: use < for left-alignment,
> for right-alignment, ^ for center
alignment

Python
Review

Overview of Basic Python Concepts
● Output to the console using print function
● Variables can obtain simple values (int, float, bool, str) via assignment
● Arithmetic operators (+, -, *, /, //, %, **)
● Conditions and relational operators (<, >, <=, >=, !=, ==)
● for loop and the range function
● while loop
● writing functions that have 0 or more parameters
● the input function to prompt the user for keyboard input
● import modules (math, random, ...)

How Functions “Return”

 ____bar()

 …
 …

def foo():
def bar():

returnreturn intExpr

n =

Writing Functions that Return a Value

● Use at least one return statement with a value

● Example: compute area of a circle

○ def circle_area (radius) :
 result = math.pi * radius*radius
 return result
 # see file returnValues.py

○ However, this will NOT work, unless you import math

Python
Logical Operators

Logical Operator:
● To execute code only if both of two (or more)

conditions are true, put and between the conditions.
○ Example: does integer n satisfies the inequality

 4 < n <= 9 use if 4 < n and n <= 9: …

● A “truth table” formally defines and :
 p False False True True

q False True False True
p and q False False False True

and

Logical Operator:
● If at least one of two (or more) conditions need be

true, use the "logical inclusive or” operator, or
○ Example: if age < 16 or age > 65 :

 print ("Not in workforce")

● A “truth table” formally defines or :
p False False True True
q False true False True

p or q False True True True

or

Logical Operator:
● Sometimes you may want to invert a condition with not

(logical negation)

○ This operator takes a single boolean expression and
evaluates to True if that condition is False, and to False if
that condition is True.

● Occasionally useful are “DeMorgan’s Laws”

○ not (a and b) is the same as …

○ not (a or b) is the same as …

not

